Benefits and Impacts of Emerging Precision Breeding
新興精準育種科技發展效益

Mr. Jerry C.W. Yu
Biotechnology Industry Study Center
Taiwan Institute of Economic Research
Emerging Precision Breeding is Supporting Development

- Precision Breeding
- Varieties
- Agriculture
- Food
- Feed
- Fiber
- Fuel

100B USD*
4,000B USD*

Source: TIER
*estimated from FAO Statistics (including Agriculture, Forestry, Aquaculture and Husbandry)
Benefits and Impacts

- **Improved Efficiency**
 - Increased value for research and development investments
 - Enables development of perennial crops
 - Reduced breeding costs from better animal health and welfare

- **Greater Productivity**
 - Reduces acreage used for agriculture
 - Controls genetic and vector-borne diseases
 - Adapts crops to suit changing environments (i.e. climate-adapted strains)

- **Met Preferences**
 - Breaking of unfavorable trait linkages
 - Can add traits to meet consumer preferences

- **Increased Diversity**
 - Increases crop diversity
 - Expands diversity beyond what is possible using meiotic recombination

Source: OECD
Improved Efficiency

From 7-25 years to as few as 2-3 years since its target-specificity effectively bypasses the need to go through a number of plant generations to achieve a particular genetic combination.

Gene editing could produce, in a single generation, one animal bearing both polled (without horns) and dairy merits, a result Hackett estimated, that would otherwise take 25 to 30 years of intense backcrossing of dairy and beef breeds.

Source: OECD
Greater Productivity

- High-yield Maize, Soybeans and Canola (improved photosynthetic efficiency)
- Hyper-growth Pig, Cattle, Goat, Sheep and Carp
- Easy-aquafarming Tuna Fish
- Starch Accumulation in Leaf and Stalk Tissue Maize
- Herbicide-resistant Canola
Greater Productivity

- Bacterial Blight Resistance Rice
- Powdery Mildew Resistant Wheat
- PRRS-resistant Pigs
- African Swine Fever Resistant Pigs
- Tolerance to Abiotic Stress (drought, cold, high salinity, nitrogen deficiency etc.): Soybean, Cotton, Corn, Rapeseed, Potato, Rice, Sugarcane, Tomato and Wheat
Met Preferences

- Hornlessness Cow
- Limit Heat Loss Pigs
- Low Phytate Maize
- Waxy Corn
- Anti-browning Mushroom, Potato and Apple
- High-GABA Tomato
- Healthier High-Oleic Low-Linolenic Soybean
- Low-gluten wheat
- Reducing sugars Potato
- Reducing acrylamide Potato
- Safer Xenotransplantation
Thank you for your attention!

Taiwan Institute of Economic Research
Biotechnology Industry Study Centre
Intellectual Property Valuation Service Centre

台灣經濟研究院
生物科技產業研究中心
智慧財產評價服務中心

余祁暐總監 (Mr. Jerry C.W. Yu)、
譚中岳副研究員 (Mr. Chung-Yueh Tan)

www.biotaiwan.org.tw
TEL: (02)2586-5000
FAX: (02)2597-9641
Email: jerryyu@tier.org.tw